Cook

Tutorial

Aryeh M. Friedman
aryeh@m-net.arbornet.org

This document describes Cook version 2.34
and was prepared 25 September 2010.

This document describing the Cook program is
Copyright © 2002 Aryeh M. Friedman

Cook itself is
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your optionydater version.

This program is distributed in the hope that it will be useful, WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANABILITY or FITNESS
FOR A FARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should hae receved a mpy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

Cook

1. Building Programs

If you write simple programs (aviehundred lines
of code at most) compiling the program is often
no more then something ékhis:

gcc foo.c -0 foo
If you have a £w files in your program you just
do:

gcc foo.c ack.c -o foo
But what happens if some file that is being
compiled is the output of an other programelik
using yacc/le to construct a command line
parser)? Otously f 00. ¢ does not exist before
f 0o.y is processed by yacc. Thus yowéap
do:

yacc foo.y

cc foo.c ack.c -0 foo
What happens if say you modifck. ¢ but do
not modifyf 00. y? You can skip the yacc step.
For a snall program lile the one abee it is
possible to remember what order you need to do
stuff in and what needs to be done depending on
what file you modify.

Let's adld one more complication lst'say you
have a Ibrary that also needs to be "built" before
the ecutable(s) is bilt. You need to not only
remember what steps are needed to construct the
library object file but you also need to remember
that it needs to be done you meakyour
executables. Nw add to this you also need to
keep track of different ersions as well figuring
out hav to huild different versions for diérent
platforms and/or customers (say you support
Windows, Unix and hee a ient, Server and
trial, desktop and enterprisergions of each and
you need to produce wrand all combination of
things... thas 24 dfferent versions of the same
set of &ecutables). Itnow becomes almost
impossible to to remember Wwoeach on is hilt.

On top all this if you bild it differently every
time you need to recompile the program there is
no guarantee you will not introduceids due to
only the order stdifwvas built in.

And the abwe example is for a "small
applications (maybe 10 to 20 files) what happens
if you have a nedium or lage project (100s or
1000s of files) and 10+ or 100xeeutables with
each one having 10+ different configurations.

is clearly the number of possible ways to mak
this approaches infinityery rapidly (in algorithm
designer term®(n!)). Therehas to be a easier
way! Traditionally people h&e wsed a tool called
make to handle this compkity, but male has

Aryeh M. Friedman

Tutorial

some major flaws such that it is very hard if not
impossible to ma& know how to build the entire
project without some super nasty andwéd
"hacks". Inthe last fev years a program called
Cook has gined a small but growing popularity
as a extremely "intelligent" replacement for make.

2. Dependency Graphs

Clearly, for ary build process the uld
management utility (e.gcook or make) needs to
know that for eent Y to occur gent X has to
happen first. This kmnledge is called a
dependeng In smple programs it is possible to
just tell the build manager that X depends on Y
This has a fe problems:

- You can not define generic dependencies
for example you can not say that .afl files
depend on c files of the same name.

- Often there are intermediate files created
during the build process for xample
foo.y - foo.c - foo.o - foo.
This means that each intermediate file
needs to be made before the final program
is built.

« In almost all projects there is no singlayw
of producing ap given file type. For
example ack.c does not need to be
created from theack.y file but f 0o.c
does need to be created from theo. y
file.

« Many times mag things depend onvent X
but X can not happen until Y happenBor
example if you need to compile all the
files into. o files before you can combine
them into a library then once the library is
made then andnly then can you build all
the &ecutables that need that library.

- Depending on whatariant of an gecutable
you are hilding you may hee a ottal
different set of dependencies for that
executable. Br example the Microsoft
version of your program may be totally
different than the Unix one.

Thus one of the most fundamental things an
build manager needs to kwois create a "graph"

of all the dependencies (i.e. what depends on
what and what order sfuieeds to be built in).

Obviously if you modify only a file or te and
retuild the project you only need to recreate those
files that depend on the ones you changéd.

Page 1

Cook

example if | modifyf 0o. y but not ack. ¢ then
ack.c does not need to be recompiledtb
foo. c after it is recreated doesAll build
managers kne how to do tis.

3. Cook vs. Make

Many times the contents of entire directories
depend on the uilding of everything in other
directories. Mak has traditionally done this with
"recursve make". Thereis a basic flev with this
method though: if you "blindly" mak each
directory in some preset order you are doingf stuf
that is either unneeded and/or may cause
problems in the build process down the ro&odr

a nore complete explanation, see Reawgdviake
Considered Harmftl

Cook tales the opposite approach. It makes a
complete dependeng graph of your entire project
then does the entire "cook" at the root directory of
your project.

4. Teaching Cook about
Dependencies

Eachnode in a dependencgraph has tw basic
attributes. Thdirst is what other nodes (if any) it
depends on, and the second is a list of actions
needed to be performed to bring the nogeto
date (bring it to a state in which gmodes that
depend on it can usestiroducts safely).

One issue we ha right off the bat is which node
do we start at. While by ceantion this node is

usually calledal | ’ it does not hee © be, as we

will see later it might notven havea hard coded

name at all. Once we kmowhere to start we
need somsay of linking nodes together in the
dependengcgraph.

In cook all this functionality is handled by
recipes. In basic terms a recipe is:

» The name of the node so other nodesakno
howvw to link to it (this name can be
dynamic). Thisname is usually the name
of a file, but not avays.

1. Miller, PA. (1998). Recursive Make Considered
Harmful, AUUGN Journal of AJUG Inc., 19(1), pp.
14-25.
http://aegis.sourceforge.net/auug97.pdf

Aryeh M. Friedman

Tutorial

« A list of other recipes that need to be

"cooked" before this recipe can be
processed. Thbest way to think of this is

to use the metaphor that cook is based on.
That being in order to makmeal at a fine
restaurant you need to makach dish.For
each dish you need to combine the
ingredients in the right order at the right
time. You keep dividing up the task until
you get to a task that does not depend on
something else lik seing if you hae
enough eggs to mek the bread. A
dependeng graph for building a softare
project is almost identical except the
ingredients are source code not food.

« A list of actions to perform once all the

ingredient are ready Agan using the
cooking example, in order to malk Fench
cream sauce youather all the ingredients
(in cooks cases the output from other
recipes) and then andnly then put the
butter in the pan with the the flour and
brown it, then slowly mix the milk in, and
finally add in the cheese.

So in summary we ke te following parts of a
recipe:

- The name of the recipgehode in the graph

- A list of ingredients needed to cook the

recipe

- Alist of steps performed to cook the recipe

From the top led view in order to mak a
hypothetical project we do the following recipes:

- We repeatedly process dependgngraph

nodes until we get &eaf node (one that
does not hee any hgredients). Namelwe

go from the general to the specific not the
other way.

. Visit theal | recipe which hagr ogr ani

andpr ogr an® as its ingredients

- Visit the programl node which has

programl.o and libutils.a as its
ingredients

« Visit programl. o which has

programl. c and programl. h as its
ingredients

- Visit progr ani. c to discaer that it is a

leaf node, because the file alreadists we
need to do nothing to create it.

Page 2

Cook Tutorial

- Visit progr ani. h to discaer that it is a « Now that we hege dl the ingredients for
leaf node, because the file alreadises we progran2 we can cook it with a
need to do nothing to create it. command something like

« Now that we heae dl the ingredients for gce prograng.o [ibutils.a \
programl. o we can cook it with a -0 program®
command something like - Return to theal | recipe and find that we

gcc -c programl.c \ have wmoked all the ingredients and there
-0 progrant. o are no other actions for itVe ae done and

our entire project is built!
Now what happens if | say modifyr ogr an®. c
all we hae o do is walk to the entire graph from

« Visit the |l i butils.a node which has
i bl. o asits only ingredient.

« Visit | i bl. c to discaver that it is a leaf al I and we find thapr ogr an®. ¢ has changed,
node, because the file already exists we and do ap node which depends on
need to do nothing to create it. progran®. ¢ needs to be brought up to date,

and ay nodes which depend ahem, and so on.
In this example, this auld bepr ogran2. c -
progran?.o - progran - all.

- Now that we heae dl the ingredients for
i bl.o we can cook it with a command
something like

gcc -c libl.c -o libl.o

- Now that we hege dl the ingredients for °. ReCIpe Syntax
libutils.a we can cook it with a All statements, recipes and otherwise, are in the

command something like form of
rmlibutils.a statement;
ar cq libutils.a libl.o Note the terminating simicolon Y. An example

statement is

echo aryeh;
The only time the the simicolon) is not needed
is in compound statements surrounded kgurly
braces} . In general the corention is to follav

« Now that we hege dl the ingredients for
programl we can cook it with a
command something like

gcc programi.o libutils.a \

-0 progrant the same general form that C uses, as it is with
« Visit the progran?2 node which has most modern programming language§his
progran2.o0 and libutils.a as its means that for the main part almosergthing
ingredients you hae learned about writing ¢ statements

works just fine in cook. The only exception are
the [square braaks | used instead of(
parenthesep in most cases.

. Visit prograng. o which has
progran?.c and programl. h as its
ingredients

The general form of a recipe, there are some

* Visit prograng. ¢ to discoer that it is a adwanced options that do not fit well into this

leaf node, because the file already exists we

need to do nothing to create it. format, is: o .
name: ingredients
- Visit progr an®. h to discaer that it is a {
leaf node, because the file already exists we actions
need to do nothing to create it. }

. Now that we hae dl the ingredients for Note: the actions and ingredients are optional.

progran2. o we can cook it with a Here is a recipe from the amexample:

command something like programl. o: progranil.c programnidl. h
gcc -c progran2.c \ {
-0 progran?.o gcc -c progrant.c

- There is no need to visit the butil s. a -0 progran. o;

node, or ap of its ingredient nodes,
because Cook remembers thatythave
been brought up to date already.

}

The only thing to remember here is that
programl. ¢ either has to exist or Cook needs
to knov how to cook it. If you reference an

Aryeh M. Friedman Page 3

Cook

ingredient that Cook does not kmdwow to cook
you get the following error:
cook: progranil: don’t know how
cook: cookfile: 1: "programl"
not derived due to errors
deriving "programl. o"
All this says is there is no algorithmic way to
build exanpl el. o that Cook can find.

A cookbook file can contain zero or more recipes.
If there is nadefault recipe (the first recipe whose
name is hard coded) you get the following error:
cook: no default target
Most of the time this just means that Cook cannot
figure out what the "concrete" name of a recipe is
based solely by reading the cookbook. Byaatf
cook looks for the cookbook in "kdo.cook”
[note 1].

6. A Sample Project

For the remainder of the tutorial we will be using
the following sample project source tree:

==—_Project
J=—FHowt 0. cook
Fe=Lib
B
7 1 b2.c
S=11b.h
F=—progl
= X
b src2.c
T nai n. c
F—Prog2
o
] src2.c
T nain. c
==—doc
F=—progl
~ —mnual
=—prog2
— =—mmnual

The final output of the Wild process will be
completely working and installedkecutables of
progl and prog2 installed in /usr/local/bin and the
documentation being placed in
lusr/local/share/doc/myproj.

7. Our First Cookbook

The first step in making a cookbook is teth
out the decencies in our sample project the graph
would be:

Aryeh M. Friedman

Tutorial

Now we know enough to write the first version of
our cookbook. The cookbook which folls
doesnt actually cook anything, because it
contains ingredients and no action&e will add
the actions needed in a later section. Here it is:

/* top level target */

all: /usr/local/bin/progl
/usr/ 1 ocal /bin/prog2
/usr/ 1 ocal / share/ doc/ progl/ nanual
/usr/ 1 ocal / share/ doc/ prog2/ nanual

/* where to install stuff */

/usr/ 1 ocal /bin/progl:
bi n/ progl ;

/usr/ 1 ocal / bin/prog2:
bi n/ prog2 ;

/usr/ | ocal / share/ doc/ progl/ manual :
doc/ progl/ manual ;

/usr/ | ocal / shar e/ doc/ prog2/ manual :
doc/ prog2/ manual ;

/* how to link each program */

bi n/ progl:
progl/ mai n. o
progl/srcl.o
progl/src2.0
lib/liblib.a

bi n/ prog2:
prog2/ mai n.
prog2/srcil
prog2/src2.
lib/liblib.a ;

/* how to use yacc */
prog2/src2.c: prog2/src2.y ;

[elNe o]

Page 4

Cook

/* how to conpile sources */

progl/ mai n.o: progl/min.c ;
progl/srcl.o: progl/srcl.c ;
progl/src2.0: progl/src2.c ;
prog2/ mai n.o: prog2/min.c ;
prog2/srcl.o: prog2/srcl.c ;
prog2/src2.0: prog2/src2.c ;
lib/srcl.o: lib/srcl.c ;

lib/src2.0: lib/src2.c ;

/* include file dependenC|es */
progl/main.o: lib/lib.h
progl/srcl.o: lib/lib.h ;
progl/src2.0: lib/lib.h ;
prog2/main.o: lib/lib.h
prog2/srcl.o: lib/lib.h ;
prog2/src2.0: lib/lib.h ;
lib/srcl.o: lib/lib.h
lib/src2.0: lib/lib.h

/* how to build the library */

lib/liblib.a:
lib/srcl.o
lib/src2.0 ;
In order to cook this cookbook just type the
cook

command in the same directory as the cookbook
is in.

8. Soft coding Recipes

One of the most glaring problems with this first
version of our cookbook is it hard codes
evaything. Thishas two problems:

- We have to be super verbose in \Wwowe
describe studf since we hse b gecify
evay single recipe by hand.

. If we add nw& files (maybe we add a third
executable to the project) we V& ©
rewrite the cookbook foevery file we add.

Fortunately Cook has a way of automating the
build with implicit recipes. It has a ay of saying
how to move fom ary arbitrary . ¢ file to its. o
file.

Cook provides seral methods for being able to
soft code these relationships. This section
discusses file "patterns" that can be used to do
pattern matching on what recipe to cook for a
given file.

Note on pattern matching notation used in this
section:

[string] means the matched pattern.

Aryeh M. Friedman

Tutorial

The first thing to &ep in mind about coak’
pattern matching is once a pattern is matched it
will have the same value for the remainder of the
recipe. So for example if we matched
prog/[srcl].c then an other reference to that
pattern will also return srclFor example:

prog/ [srcl]. o: prog/[srcl]. o ;
if we matched srcl on the first match
(progl/ [srcl]. o) then we will alvays match
srclin this recipe ifr ogl/ [srcl]. c).

Cook uses the percen®)(character to denote
matches of the relag file name (no path)Thus
the abwe recipe would be written:

prog/ % o: prog/ %c ;
Cook also lets you match the full path of a file, or
parts of the path to a file. This done wim
wheren is a part numberFor example

/usr/ 1 ocal /bin/progl
could match the pattern

1%/ 92/ Y8/ %
with the parts be assigned

%1 usr

%2 local

%3 bin
% progl

Note that the final component of the path has no
(there is no%t for progl). If we want to
reference the whole path, Cook uses %0 as a
special pattern to do this.

/usr/ 1 ocal /bin/progl
could match the pattern

%%
with the parts be assigned

%0 /usr/local/bin/
% progl
Paterns are connected together tB@9% c will
match any c file in ary pattern.

Let's rewrite the cookbook for our sample project
using pattern matching. The redat portions of
our cookbook are replaced by

/* how to use yacc */

W% c: W%y,

/* include file dependencies */

%% c: lib/lib.h;
/* how to conpile sources */
%% o: Y0% c;

When constructing the dependgngraph Cook
will match the the first recipe it sees that meets all
the requirements to meet avgi pattern. l.e.if

we hae a pttern forprogl/ % c and one for

Page 5

Cook Tutorial

%% o and it needs to find the right recipe for way of changing the just theaviable name and
progl/ src. o it will match the one that appears not the values it produces. In cook we do this

first in the cookbook. So if the first one%®8% c with something lile [[dir_name]_obj]. Theactual
then it does that recipeven if we meant for it to procedure for getting the list of files will be
matchpr ogl/ % c. covered in the "control structures” section.

. Let's revise some sections of our sample progct’
9. Arbltrary Statements cookbook to ta& advantage of variables:
and Variables / wherf to install -st uff */

prefix = /usr/local;

Any statement that is not a recipe, and not a idoc_dir = [prefix]/share/doc;
statment inseide a recipe, iseeuted as soon as it ibin_dir = [prefix]/bin;

is seen.For example | can hae aHowt 0. cook
file that only contains the following line:

echo Aryeh;
and when eer | ise thecook command it will
print my name.

/* top level target */
all:
[ibin_dir]/progl
[ibin_dir]/prog2
[idoc_dir]/progl/ manual
This in and upon it self is quite pointless but it [idoc_dir]/prog2/ manual ;
does gie a due about hev we can set some
cookbook-wide glues. Nav the question is hw
do we symbolically represent those variables.

/* where to install each program*/
[ibin_dir]/% bin/%;

[idoc_dir]/% nmanual : doc/ % manual ;
Cook has only one type of variable and that is a As you can see we didnhake the cookbook an

list of string literals, i.e* ack","foo","bar", simpler because we do not kmohow to
etc. There are no restrictions onvagyou name intelligently set stufbased on what the actual file
variables, &cept thg can not be reservedards, structure of our projectThe only thing we gin

this is pretty close to the restrictions most here is the ability to change where we installfstuf
programming languagesvye& There is one major very quickly be just changing install_dikVe dso
difference though: variables can start with gan a little flexibility in how we rame the
numbers and contain punctuation characters. directories in our source tree.

Additionally you can vary ariable names, i.e. the

name of the actualaviable can use aaviable i i+

expression (this is hard to explain but easy to 10. USIﬂg BUIlt In

shav which we will do in a fe paragraphs). Functions

All variables, when queried for theialue, arg If all you could do was setaviables to static

in square braaks] for example if the "name" values and do pattern matching cook would not be

variable contains "Aryeh" then: very useful, i.e. gery time we add a mwe source
echo [nane]; file to our project we need to wete the

Has exactly the same result as the vioes cookbook. V& reed some way toxgact useful

example. \Ariables are simply set by usingr data from wariables and la® aut what we do not

= val ue; Forexample: want. For example if we want to kmowhat all
nane = Aryeh; the .c files in the progl directory are we just ask
echo [nane]; for all files that match progl/%.dMe @uld use

Let's say | need to hae two variables called the match_mask built-in function to extract the
'progl_obj’ and 'prog2_obj' that contain a list of needed sublist of files. Built-in functions can do
all the .o ingredients in the progl and prog2 mary other manipulations of our source tree
directories respectely. Obviously the same contents and he to process them. In general |
operation that produces thalue of progl obj is will introduce a gien huilt-in function as we
identical to the one that produces prog2_ obj encounter them.

except it operates on a different directorieSo
why then do we need twdifferent operations to
do the same thing, this violates the principle of
ary given operation it should only occur in one
place. Inreality all we need to do is %@ some

As far as cook is concerned, for the most part,
functions and variables are treated identically
This means anywhere where you would use a
variable you can use a functionn general a
function is called lik this:

Aryeh M. Friedman Paye 6

Cook

[func argl arg2 ...
For example:
nane = [foobar aryeh];

argN|

11. Source Tree Scanning

The first thing we need to do to automate the
process of handling mefiles is to collect the list
of source files.In order to do this we need to ask
the operating system tovgi s a ist of all files in
a drectory and all its subdirectories. IiJnix the
best way to do this is with the find(1) command.
Thus to get a complete list of all files in say the
current directory we do:

find . -print
or ary variation thereof.

Great, nav how do we et the output of find into
a variable so cook can use WVell, thecol | ect
function does thisWe then just assign the results
of col | ect to a list of files, build experts kkto
call this the manifest. So here isvhave get the
manifest:

mani fest = [stripdot

[collect find . -print]];

That is all nice and wellld hov do we et the list
of source files inprogl only, for example.
There is a function calleadrat ch_nmask that
does this.Themat ch_nask function returns all
"words" that match some pattern in our lior
example to get a list of allc files in our project
we do:

src = [match_mask %% c

[mani fest]];

It is fine to knev what files are already in our
source tree but what we really want to do is find
the list of files that need to be caak We use the
fromo function to do this. The fronto
function takes all the words in our list and
transforms all the names which match to some
other name For example to get a list of all theo
files we need to cook we do:

obj = [fronto 9% c Y9% o

[srcll;

It is rare that we need to kwabout the gistence
of . ¢ files since in most cases, unlessytlaee
derived from cooking something else, theither
exist or they do ot exist. Inthe case of them not
existing the. o tamget for that source shoulaiF.
For this reason we really do not needsac
variable at all. Remember | mentioned that a
function call can be used anywhere a variable can.
This means that we can do timet ch_nmask call
in the same line that we do the fromto. Thus the
new statement is:

Aryeh M. Friedman

Tutorial

obj = [fronto %% c Y9% o
[mat ch_nmask %90% c
[mani fest]]];
Time to update some sections of our sample
projects amokbook one more time:
/* info about our files */
mani fest =
[collect find . -print];
= [fromo W% c %W%o0
[mat ch_nmask %0% c
[mani fest]]];

obj

/* how to build each program */
progl obj = [nmatch_mask
progl/ %o [obj]];
prog2 _obj = [nmatch_mask
prog2/ %o [obj]];
binf% [%o0bj] lib/lib.a;

/* how to build the library */
lib obj = [match_mask lib/ %o
[obj]];

lib/lib.a: [lib_obj];
The important thing to obsexvrere is that it is
now possible to add a source file to one of the
probram or library directories and Cook will
automagically notice, without gmeed to modify
the cookbook. It doeshmatter whether there are
3 files or 300 in these directories, the cookbook is
the same.

12. Flow Control

If there was no conditional logic in programming
would be rather pointless, whoawts to write |
program that can only do something once, the
same is true in cookEven though the sttifve
need to conditional in a build is ofteery trivial

as far as conditional logic goes, namely there are
if statements and the egdlent of while loops
and thats all.

If statements are pretty straight fard. If you
are used to C, C++gtc, the only surprise is the
need for the hen keyword. Hereis a example if
statement:

if [not [count [file]]] then

echo no file provided;

The count function returns the number ofrds
in the "file" list and the not function is true if the
argument is 0. Other then that the if statement
works much the way you would expect it to.

Cook has only one type of loop that being the
| oop statement and it takes no conditionA.
loop is terminated by theEoopst op statement

Page 7

Cook

(like a Cbreak statement). Othethen that loops
pretty much werk the way you expect them to.
Here is an example loop:
/* set the loop "counter" */
list = [kirk spock 70f9
j aneway worf];

/* do the loop */

| oop word = [list]

{
[* print the word */
echo [word];

}

13. Special Variables

Like most scripting languages Cook has a set of
predefined ariables. Whilemost of them are
used internally by Cook and not by the yusEe

of them deserves special mention and that is
target. Thet arget variable has no meaning
out side of recipesub inside recipes it refers to
the current recipe’ targets "real" name, i.e. the
one that Cook "thinks" it is currenthuldding, not

the soft coded name we pided in the
cookbook. Br example in our sample projest’
cook book if we where compilingi b/ srcl. c
intolib/src.othe%®% o: %% c; recipe
would, as far as Cook is concerned, actually be
lib/srcl.o: lib/srcl.c; The recipe
name, and thus thiet ar get], of this is set to
thel i b/ src. o string.

There are other speciahnables described in the
Cook User Guide.You may want to look them up
and use them when you start writing more
advanced cookbooks.

14. Super Soft coding

Now we know enough so we can makCook
handle hilding an arbitrary number of programs
in our sample project. Note the follaving
example assumes that all program directories
contain anmai n. ¢ file and no other directory
contains it. The best way to understand what is
needed it to look at the sample cookbook for this
line by line. So here are the rewritten sections of
our sample cookbook:

/* nanmes of the prograns */

progs = [fromo %Y nmain.c %

[mat ch_mask % nmai n. c
[mani fest]]];

/* top |level */

al | :

t ar get

Aryeh M. Friedman

Tutorial

[addprefix [ibin_dir]/

[progs]]
[prepost [idoc _dir]/ [/ manual

[progs]];
/* how to build each program */
| oop prog = [progs]
{

[prog] _obj = [match_mask
[prog]/%o [obj]];
}
binf% [%obj] lib/lib.a;

The basic idea is that we use a loop to create the
list of . o files for all programs and then we use
variable \ariable names to reference the right one
in the recipe.

15. Scanning for Hidden
Decencies

In most real programs mostc files hae a
different set of#i ncl ude lines in them. For
example progl/srcl.c might include
progl/ hdr 1. h but progl/src2. c does not.
So far we hee @nveniently avoided this fact on
the assumption that once madé files dont
change. Awg experience with a non-trial project
shaw this is not true. So kedo we aitomatically
scan for these dependencies? It would not only
defeat the purpose of soft codingtlwould be a
pain in the butt to he&e © encode this in the
cookbook.

One way of doing it is to scan eactc for

#i ncl ude lines and say anthat are found
represent "hidden" dependencies. It would be
fairly trivial to create a shell script or small C
program that does thisCook though has been
nice enough to include program that does this for
us in most cases that are not insanely natgtri
There are seral methods of using_i ncl we

will only cover the "trivial" method here, if you
need higher performance refer to the Cook User
Guide, it has a whole chapter on include
dependencies.

Thec_i ncl program essentially just prints a list
of #i ncl ude files it finds in its ggument. © do
this just do:

c_incl prog.c
Now al we have © do is tave Cook col | ect
this output on the ingredients list of our recipe
and boom we he a Ist of our hidden
dependencies. Here the rewritten portion of our
sample cookbook for that:

Page 8

Cook

/* how to build each program and
i nclude file dependencies */

%% o: Y% c
[collect c_incl -api %% c];
The c_incl -api option means if the file

doesnt exist, just ignore it.

16. Recipe Actions

Now that we hae dl the decencies soft coded all
we hare © do atually build our project is to tell
each recipe he to actually cook the target from
the ingredients. This is done by adding actions to
a recipe. Theactions are nothing more "simple"
statements that are bound to a reciféis is
done by leaing off the trailing semicolon;() on
the recipe and putting the actions ins{deurly
braces}. This is best shown byxample. So
here is our final cookbook for our sample project:
/* where to install stuff */
prefix = /usr/local;

idoc_dir = [prefix]/share/doc;
ibin_dir = [prefix]/bin;

/* info about our files */
mani fest =

[collect find . -print];

= [fromo W% c %W%o0
[mat ch_nmask %90% c
[mani fest]]];

obj

/* nanmes of the prograns */

progs = [fromo %Y nmain.c %
[mat ch_mask % nmai n. c
[mani fest]]];

/* top level target */
all:
[addprefix [ibin_dir]/
[progs]]
[prepost [idoc _dir]/ /manual
[progs]];

/* how to build each program */
| oop prog = [progs]

{
[prog] _obj = [match_mask
[prog]/%o [obj]];
}
bin/% [% obj]
{
gcc [%obj] -o [target];
}

/* how to build the library */
lib obj = [match_mask lib/ %o
[obj]];

Aryeh M. Friedman

Tutorial

lib/lib.a: [lib_obj]
{
rm[target];
ar cq [target] [lib_obj];
}
/* howto "install" stuff */

[ibin_dir]/% bin/%
{
cp bin/%[target];
}
[idoc_dir]/% nanual : doc/ % nmanual
{
cp doc/ % manual [target];
}
/* how to conpile sources*/
%% o: Y% c
[collect c_incl -api %% c]
{
gcc -c Y¥W%c -0 [target];
}

17. Advanced Features

Even though the tutorial part of this document is
done, | feel it is important to just mention some
adwanced features not wered in the tutorial.
Except for just stating the basic nature of these
features | will not go into detail on pigiven one.

« Platform polymorphism. This is where
Cook can automatically detect what
platform you are on and do some file
juggling so that you build for that platform.

- Support for priate work areas.If you are
working within a change management
system, Cook knows hoto query it for
only the files you need to work orilhis
includes the automatic check-out and in of
private copies of those files.

- Paallel huilds. For large projects it is
possible to spread theuibd over seveal
processors or machines.

Conditional recipes. It is possible to
execute a recipe one ay if certain
conditions are met and an otheawif they
are not.

Many more that are not directly supported by

Cook hut can easily be integrated using shell
scripts.

Page 9

Cook Tutorial

18. Contacts

If you find ary bugs in this tutorial please send a
bug report to Aryeh M. Friedmarar yeh@n
net . ar bor net. or g>.

The Cook web site is http:-
[/mller.emu.id.au/pmller/cook/

If you want to contact Cook’author, send email
to Peter Miller
<pm | | er @pensour ce. or g. au>.

Aryeh M. Friedman Page 10

